
Department of Mathematical and Computational Sciences
National Institute of Technology Karnataka, Surathkal

sam@nitk.edu.in https://sam.nitk.ac.in/

MA111 - Engineering Mathematics - II
Problem Sheet - 3

Ratio and Root tests, Alternating Series, Absolute and Conditional Convergence

1. Use the Ratio Test to determine if each series converges or diverges.

(i) ∑
2nn!
nn (ii) ∑

n!
nn (iii) ∑

n
n2 + 1

xn, (x > 0)

(iv) ∑ xn cos
1
n

(v) ∑
5n

2n + 5
(vi) ∑

√
n + 1
n3 + 1

xn

(vii) ∑
n!

22n−1

2. Use the Root Test to determine if each series converges or diverges.

(i) ∑
(

n
n + 1

)n2

(ii) ∑
(

n + 1
n + 2

)n

xn (iii) ∑
n3

3n

(iv) ∑
(

n + 1
3n

)n

(v) ∑ 3−2n−5(−1)n
(vi) ∑∞

n=2
1

[log(log n)]n

(vii) ∑
(n− log n)n

2nnn

3. Let an =

{
n
2n if n is a prime number
1
2n otherwise.

Does an converge? Give reasons for your answer.

4. Show that Cauchy’s root test establishes the convergence of ∑ 3−n−(−1)n
while D’Alembert’s

ratio test fails.

5. Using Leibniz’s theorm, determine whether the following series are convergent or divergent.
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6. Which of the following converge absolutely, which converge conditionally, and which diverge?
Give reasons for your answers.
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7. Prove that if
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8. Show that the positive terms of the alternating harmonic series form a divergent series ( simi-
larly negative terms).
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10. Prove that if
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an is an absolutely convergent series, then the series of its positive terms and

the series of its negative term are both convergent.

11. Prove that if
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an is conditionally convergent series, then the series of its positive terms and

the series of its negative term are both divergent.
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