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Ratio and Root tests, Alternating Series, Absolute and Conditional Convergence

1. Use the Ratio Test to determine if each series converges or diverges
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2. Use the Root Test to determine if each series converges or diverges.
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3. Let an — Zln .
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Does a, converge? Give reasons for your answer.

if n is a prime number

4. Show that Cauchy’s root test establishes the convergence of Y37~ (1" while D’Alembert’s
ratio test fails.

5. Using Leibniz’s theorm, determine whether the following series are convergent or divergent.
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6. Which of the following converge absolutely, which converge conditionally, and which diverge?
Give reasons for your answers.
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7. Prove thatif ) _ a, diverges then ) _ |a,| diverges.
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Show that the positive terms of the alternating harmonic series form a divergent series ( simi-
larly negative terms).
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Prove or disprove: If Z a% and Z b2 converges, then Z a>b? converges absolutely.
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Prove that if Z a, is an absolutely convergent series, then the series of its positive terms and
n=1
the series of its negative term are both convergent.

[e0]
Prove that if } | a, is conditionally convergent series, then the series of its positive terms and
n=1
the series of its negative term are both divergent.

Show that if } _ a, converges absolutely, then | } " a,| < ) _ a,.
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Show by example that Z a,b, may diverge even if Z a, and Z b, both converges.
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